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INTRODUCTION

Multimode fiber op c components are primarily used in

short-haul communications systems. Standard loss measurement

techniques do not accurately predict a multimode component's

performance when utilized in a Local Area Network (LAN)

because these methods do not account for the mode dependent

losses which are often exhibited by multimode devices.

Various techniques have been introduced to provide an

approximate description of the modal characteristics of these

components and include: differential mode attenuationI , mode

transition matrix2 , and mode transfer function3 . The

transition matrix formalism is described in the next section

of this report, while a detailed discussion of the other

methods is presented in the section entitled, "Alternative

Approximation Techniques."

Much attention has been given to the Mode Transition Matrix

(MTM) method. Holmes2 introduced the technique in 1980 and

it has since been successfully applied to quasi-step-index

fibers4 , multimode fiber transmission5, and graded index

fusion splices 6 . Gabriel 7 rigorously discussed the mode block

matrix formalism; generalizing the technique to allow for

other basis sets including Chebychev and Jacobi polynomials,

and Gryk, et al. 8 investigated the sensitivity of the matrix

elements to variations of the input launch conditions. While

the technique offers a more complete description of a passive



fiber optic component's performance than standard loss

measurements, the method is inherently complicated since it

relies on a determination of the modal power distribution

(MPD) as well as the total optical power. It was the purpose

of the present work to remove the complications associated

with the determination of the Mode Transition Matrix, and

develop a quick, non-destructive test technique which

accurately predicts the performance of these passive fiber

optic devices when utilized in a Local Area Network.
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THEORY

Modal Power Distribution

The optical power propagating in a multimode optical fiber is

distributed between the various modes of the fiber. The

modal power distribution, P(8,V), gives a complete description

of the optical power carried by each guiding fiber mode.

Grau and Leminger 9 derive a relationship between the modal

power distribution and the near field pattern, N(r), for

axially symmetric fibers in the mode continuum approximation:

A R (r, 3)

N(r)=2 (nlk0)2 d [R2 (r, ) -V 2 ] -1/2 P(B,V)dv
fq(q)A o 1

where,

R(r,S) = V I [b- - g(G)] 2

a &Aa (la)

s is the normalized radius, g(s) is the refractive index

profile, V is the fiber's V-number, k0 is the free-space

wavenumber, ni is the index of refraction along the axis of

the fiber, A is the refractive index contrast, 6 is the

propagation constant, and V is the azimuthal mode number.

If the MPD is assumed to be only a function of 6 then the

total power is found by integrating the MPD,

P = P( ) m ( ) d(
Jo (2)

where m(8) is the mode density as given by Leminger and

Grau1 0 integrated over V. For parabolic index profiles, the
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density of modes is given by

22(3)

These results assume a mode continuum approximation (the MPD

is considered to be a continuous function of continuous mode

parameters) since the phase of the light has been ignored

during the measurement of the near field pattern. In other

words, these results are only valid for incoherent light, or

if they are interpreted as the average over all possible

speckle patterns for coherent light. Mickelson and

Eriksrud II discuss the mode continuum approximation in detail

and determine the range of linewidths for which the modes

form a continuum for a parabolic index profile to be:

ako ng (4)

where ng is the effective group index. For a typical

100/140m fiber the source linewidth must on the order of

0.25nm. This is not very restrictive since most fiber optic

sources, excluding narrow linewidth distributed feedback

laser diodes and the like, will generally exhibit linewidths

on the order of a few nanometers.

Although the near field pattern is uniquely determined by the

modal power distribution, it can be shownI1 that the converse

is not true. Therefore, an assumption as to the form of the

MPD must be made if the MPD is to be determined from a set of

near field pattern data. One possible, and often used,

simplification requires the modal power distribution to be
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independent of the azimuthal mode number, v. Then a unique

determination of the MPD can be made from the near field

pattern and is given by:

p() = a dN(r) evaluated at A= g(s)
A(niko)2 dr dg(s)/ds A (5)

For parabolic index profiles, this reduces to:

P(S) = - ja2  1 dN(r)

2A(njko) r dr (6)
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Mode Power Vector

The modal power distribution can be written as a linear

combination of an orthogonal, complete set of functions,

Oj (8),
P(8) Mr(8) = 0j O (8)

j (7)

where the coefficients are given by

Cj =1 P(8) m(S) 4j(8) dS
A,2 Jo (8)

The functions, *j(S), are not normalized. The set of

normalization constants are given by

A f () dS

If the basis functions are not orthogonal, the coefficients

must be determined by simultaneously solving a set of linear

equations of the form

P(8) m(S) Oj (8) dS = ncn (j ) Oj( 8 ) d)
0 n (fo(10)

For the purposes of this investigation, however, an

orthogonal basis is assumed. The modal power distribution

can be described as a mode power vector, whose elements are

given by:

6



P=(P 1 , P2 ... Pj,---P) such that Pj = cjA()

If we choose a normalization for our basis set such that

2(12)

then the total power can be written in the form:

Pot = P
i (13)
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Mode Transition Matrix

The modal coupling of a passive fiber optic component can be

described by the transformation

P0  (8) m() = f T(8,') Pi () m(') d ' (14)

where Pi(S)m(B) and PO(b)m(S) describe the MPD entering and

exiting the component, respectively. Inserting equation (7)

for the modal power distributions of equation (14), we get:

&j t (8)= ' C" T(8,8') j(&') d8')

J (15)

Multiplying each side by Ok(S) and integrating over 8 yields:

P= P ( fk(8) T(8,8') Oj(8') dS d8')
A (16)

which can be written as a matrix equation of the form:

F= T *pi (17)

where the matrix elements are given by:

Tki = 'k(8 T(,8') 4 j(8') dS dS'AJ2  (18)

and Pi and PO are the aforementioned mode power vectors

determined at the input and output of the fiber optic

component, respectively. The mode transition matrix, T,

8



described in this fashion is completely equivalent to the

mode transfer function T(6,8') . Unfortunately it is of

infinite dimension, and therefore a solution to the matrix

equation (17) can not be determined.

9



Finite Element Matrix

The matrix of equation (18) is of infinite dimension, and as

such, is of little practical importance. If we assume,

however, that the modal power distribution can be

approximated by a finite sum of N orthogonal functions

then the mode transfer function is approximately described by

an NxN matrix. For simplicity, we may assume the expansion of

the modal power distribution to be truncated after only two

functions.

P(S) m(S) =c C1(8) + c2 0(8) (19)

The mode transition matrix is then given by the 2x2 matrix:

= T1 T1 
(20)

The four independent elements can now be uniquely determined

by measuring the two sets of input and output modal power

distributions. If we denote the independent measurement sets

by P(a) and P(b), then equation (17) yields a set of linear

equations of the form

PO(a ) =T-.Pi(a) : Pob) =T-.Pi(b)  (21 )

This set can be written as a single matrix equation

= P=O [PO(a) P0(b)1 ~ P,(a) P,(b)1
P =T-P where -- ) and =[(P

P e(a) P (b)J Pe P(a) P(b)J (22)

whose solution is given by

10



T= Po (P)1 (23)

It is obvious that the inverse of PI must exist for the

transition matrix to be determined. Therefore, the

determinant of PI must not vanish.

det() = P(a) P 1(b) - P 1(b) P2 (a) * 0 (24)

This requires that the two sets of modal power distributions

used to calculate T must have been for linearly independent

input MPDs. Although this method could theoretically be

extended to a matrix of very large dimension, diffraction

limitations restrict the number of suitably independent input

conditions to only a few (2 or 3). Unrau 12 suggests that a

2x2 matrix should be sufficient to describe the modal

properties of many fiber optic components and is therefore

the focus of this investigation.

11



Step Function Basis

Orthogonal step functions form a physically descriptive basis

set. Considering the 2x2 matrix aforementioned, the two

orthogonal step functions can be written:

1, 6<80  0, 8<80
0i{ , 8>80' 1 { , 8>80 (25)

The mode power vector is then given by:

PI = ('P(8) m() d , P2 = P(S) m() d 8
Jo (26)

Physically, this basis set integrates the modal power

distribution into low- and high-order mode blocks. P1 is the

total power contained in all the modes of propagation

constant 8<6o, while P2 contains all the power propagating in

modes of propagation constant 8>80. The mode transition

matrix elements of equation (20) calculated using this basis

can then be interpreted as mode block coupling coefficients,

where TII describes low- to low-order mode block coupling,

T12 describes high- to low-order mode mode block coupling,

T21 describes low- to high-order mode block coupling, and T22

describes high- to high-order mode block coupling. This

physically meaningful interpretation restricts the range of

each coefficient to be between 0 and 1. The major limitation

of this basis set lies in its inability to accurately

describe the modal power distribution, as was assumed in

12



equation (19). The method still has merit, however, if it is

assumed that the transfer function of equation (14) does not

distinguish between modes in the same mode block. In other

words, the transfer function must be assumed to be of the

form:

T11 k<ko S'<8o

T12 8<8, 8S
T21 > o8'<8 o

T2 853 '>(27)

so that the transfer equation (14) can be written as a matrix

equation regardless of the form of the modal power

distribution. This is the assumption made by Holmes2 and

others who have used mode blocks to calculate the mode

transition matrix, and its validity for each passive fiber

optic component must be determined from experiment.

13



Standardization

The Mode Transition Matrix method is well understood and

attempts have been made to standardize some of the

assumptions made and procedures used to calculate the MTM of

a fiber optic component. Until this section, the theory of

the MTM has been dealt with in as much generality as

possible, but the following sections require the use of these

standardizing assumptions. Therefore, these "standards" are

listed here and are assumed in all subsequent discussion of

the mode transition matrix.

1. The Mode Transition Matrix will be assumed to be a 2x2

matrix of the form of equation (27) where the cutoff

mode value will be given by: So = 0.5A.

2. The independent launch conditions to be used will

consist of an underfilled launch (small-spot)

excitation, and an overfilled launch (power in all

guided modes).

3. For the purposes of all calculations involving the modal

power distribution, the refractive index profile is

assumed to be parabolic.

4. The modal power distribution is only a function of the

propagation constant, S. Optical power is uniformly

distributed between azimuthal modes with the same

propagation constant.

14



EXPERIMENTAL DETAILS AND CONSIDERATIONS

Near Field Pattern Measurements

Assuming the modal power distribution is strictly a function

of the propagation constant, P(8,V)=P(8), then the modal power

distribution of a parabolic-index optical fiber can be

determined from the measured near field pattern using

equation (6). The near field pattern can be measured using a

CCTV camera as illustrated in Figure 1.

High Resolution CCD

Digitizer

I I I
I I I

Microscope
Objective Data Storageand Computation

SOptical
Fiber

Figure 1. Near Field Pattern Measurement System

The optical power exiting the fiber is imaged onto the CCD

array using a high-powered, large numerical aperture

15



microscope objective. For example a 40X, 0.65NA microscope

objective could be used to image a 100/14011m, 0.3NA fiber.

The fiber endface must be cleaved or polished to a minimum

cleave angle and the fiber endface should contain no flaws.

The CCTV camera must accurately measure the optical power as

a function of position, and therefore must maintain linearity

and minimize distortion. The CCTV output signal is then

digitized and stored. Since axial symmetry is assumed, the

near field pattern used in equation (6) is only a function of

radial position. Therefore, if the entire two-dimensional

NFP is measured, the center must be calculated and the data

averaged and stored as a function of the radius. Otherwise,

the NFP can be measured linearly across a diameter of the

fiber. Again, the fiber center must be calculated and the

data averaged and stored as a function of the radius. There

are several methods available to calculate the center of the

fiber. One method calculates the fiber's "center-of-mass".

The fiber center is then given by:

I N(r) x dx J N(r) y dy
X N(r)dx Yo N(r) dy (28)

A second method calculates the position of all points of the

NFP which are of equal radiance (e.g. 10% of the maximum

radiance). This ring of positions is then fit to a circle of

the form:

(x- _ )2+ (y _ yo)2 =r2 (29)

16



where xo,y o describe the position of the fiber's center.

Both of these methods have one-dimensional analogues should

the NFP be measured in a single dimension across the fiber's

diameter. Further information regarding the measurement of

the Near Field Pattern can be found in FOTP-43, "Output Near-

Field Radiation Pattern Measurement of Optical Waveguide

Fibers."

17



Modal Power Distribution Calculation

In order for the Modal Power Distribution to be calculated

using equation (5), the fiber radius and refractive index

profile must also be determined. The fiber core radius

should be measured using FOTP-58, "Core Diameter Measurement

of Graded-Index Optical Fibers." Several methods exist to

measure the refractive index profile of an optical fiber,

some of which are outlined in Marcuse1 3. The refracted ray

method is further described in FOTP-44, "Refractive Index

Profile, Refracted Ray Method." For the purposes of this

investigation a square-law profile fiber has been assumed.

A calculation of the MPD requires differentiation of the near

field pattern. Because of the noise inherent in any

measurement of the NFP, direct differentiation results in an

"amplification" of the noise such that the MPD becomes

physically meaningless. Therefore, some type of smoothing

operation must be performed on the NFP before

differentiation. One suggested smoothing operation fits the

NFP data to a linear combination of smooth functions before

differentiation. Chebychev, Type II, {Un(x)} are the

polynomials of choice for this investigation because they are

complete and orthogonal over a range [-i,+i] and have a

weighting function with a functional dependence resembling

the refractive index profile

w(x) = (1-x2)1/2  (30)

18



which accelerates convergence. The linear combination of

functions is truncated after the fitted polynomials have

sufficiently converged to the NFP data. Differentiation can

be accomplished algebraically given the known1 4 recursion

relation

(1-x 2 ) Un(x) = -n x Un(x) + (n+1) Un-, (x) (3 1)

19



Mode Selective Excitation

In order for the 2x2 transition matrix of a passive fiber

optic component to be calculated using equation (23), the

input and output modal power distributions must be calculated

for two, linearly independent input conditions. A ray of

light incident on the fiber cross section at a radius r and

angle 0 with respect to the normal, excites a mode of the

propagation constant:

_2+ sin 2 0
A a2 (NA (32)

Graphing lines of constant propagation constant yields the

phase-space diagram illustrated in Figure 2.

1.0

% Mode Number 8 0.5A

S03

XgWN~ '~'..

R,4X

0.0
0.0 05 1.0

(r/a) 2

Figure 2. Phase-space diagram for
parabolic-index optical fiber.

The guided modes of the fiber are represented by the shaded

region of the diagram. Phase-space diagrams can be used

20



effectively to calculate the modal power distribution for

various launch conditions.

1.0 1.0

0 I0.5 0. 5 .

L 64

0

0.0 0.0x 0

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

(r/a) 2 (=/a) 2 8/A

(a) (b) (c)

Figure 3. ta) Modes excited by an uniform spot r-0.7, sinO=-0.7, (b) Modes
excited in test fiber allowing for coupling between nearly degenerate modes,
and (c) resulting Modal Power Distribution.

Figure 3a shows the phase-space diagram for an underfilled,

uniform, spot excitation. The spot is assumed to be of a

diameter equal to 0.7 the diameter of the fiber under test.

The numerical aperture is also assumed to be 0.7 the NA of

the fiber under test. The power is assumed to become

uniformly distributed between modes of constant mode number

after propagating a "short" distance into the fiber,

therefore the power propagating in each mode must be averaged

between all of the modes of the same propagation constant as

illustrated in Figure 3b. The product, P(B)m(6), entering the

test fiber is calculated by integrating the optical power

along lines of constant 6. The resultant is illustrated in

Figure 3c. As we can see, the underfilled spot excitation

excites a predominantly "low-order" mode group. The phase-

21



space diagram and P(S)m(B) of a uniformly overfilled fiber are

illustrated in Figure 4a and Figure 4b.

II
1.0,

4i

0.0 0 1.0 00 0.5 1.0

(rla) 2

(a) (b)

Figure 4. Modes excited by a uniform spot r-1.0, sinO=1.0, and

(b) resulting Modal Power Distribution.

An overfilled spot launch (r=a, sin0=NA) excites a

predominantly "high-order" modal power distribution.

Therefore, we have determined that the input modal power

distributions generated from underfilled and overfilled spot

excitations are linearly independent. A mode selective

launcher which generates these two input conditions is

illustrated in Figure 5.

chromatic lox

filter microscope test
objective component core

------ 3-axis
Ligh */ Field.. translation

image Field stage 1 core
Source spot Stop

reverse viewing
(b)

(a)

Figure 5. (a) Mode Selective Launch System, and
(b) Underfilled and Overfilled Launches
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An incoherent source illuminates an adjustable spot which

is imaged using two microscope objectives onto the endface of

the optical fiber. The concentricity of the spot and fiber

is assured by viewing the fiber endface through a

beamsplitter which is introduced between the objectives. An

adjustable field stop is also placed between the objectives

for the purpose of selecting the input numerical aperture.

Agarwal, et. al. 1 5 discuss mode-selective excitation methods

in considerable detail and give several alternative methods

to the one aforementioned.
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FOUR PORT POWER SPLITTER

(experimental comparison of loss prediction methods)

A comparison of loss measurement methods was made using a

four-port power splitter which was fabricated by

concatenating three lx2, 3dB power splitters as illustrated

in Figure 6. ecl o
TP OB

C3

Figure 6. Four-port power splitter fabricated from serial 3d. power splitters.
illustrating the through ports (TP) and coupled ports (CP) for the
individual splitters: Cl, C2, and C3.

Each power splitter was connectorized using ST-type

connectors. Table 1 presents the measured mode transition

matrices of the individual splitters (a) and the matrix for

each output port of the concatenation (b). The predicted

concatenated matrices, obtained by multiplying the individual

component matrices in reverse order of their physical

sequence, are also presented for comparison (c). The

predicted values are in good agreement with the measured

values. The input power vectors for the two independent

launch conditions were measured and were found to be PL

t.801, 0.1991 for the underfilled launch and tH = [0.469,

24



0.531] for the overfilled launch. Predicted loss values of

the concatenation were calculated using three methods. The

first of these, Method 1, assumes the loss of the

concatenation can be described by the addition of the loss

values of the individual components measured using an

overfilled launch. This would be the predicted value if FOTP

34 Method A were used to characterize the components.

[0.742 -0.033 10F.7 92 -0.059 1 F 07 84 -0.0341
-0.056 0.485 JTP -0.051 0.516 ]TP -0.056 0.488

Cl C2 C3[0.250 0.086 ]cp 0.178 0.065 1 CP F0.191 0.0831
0.118 0.421 0.092 0.345 0.125 0.387

(a)

0.098 0.032 0.128 0.026
0.064 0.164 A 0.049 0.164

[ 0.567 -0.055 1F0.591 -0.0551
-0.055 0.247 1 B L-0.067 0.252

F0.146 0.049 1F0.192 0.0531
0.071 0.197 C 0.044 0.201

0.079 0.036 0.058 0.052
0.074 0.186 D 0.077 0.174

(b) (c)

Table 1. Mode Transition Matrices for (a) Ix2, 3dB power splitters,
(b) Ix4, 6dB power splitters, (c) calculated concatenation
outputs from multiplied matricies.

The second method, Method 2, assumes the concatenated loss

can be described by the addition of the loss values of the

individual components measured using an underfilled launch.

This would be the predicted value if FOTP 34 Method B were

25



used to characterize the components. Finally, Method 3

assumes the concatenated loss can be determined from the

multiplication of the power vector by the mode transition

matrix of each component in reverse order of its physical

sequence. Assuming a detector response vector of unity, the

optical loss is given by:

loss (dB)=-10-log (1"T2 1" Pf)where fn= (Pl) and f=(1,1)

I .Pin P(30)

The measured and predicted loss values for each optical port

and both launch conditions are given in Table 2.

Predicted Loss (dB)

Measured Loss (dB)
PORT Method 3

Method 1 Method 2
Overfill Underfill Overfill Underfill

A 7.46 7.75 7.15 7.20 7.35 7.46

B 4.58 3.42 4.83 3.62 4.55 3.38

C 6.35 6.53 5.91 5.75 6.10 6.21

D 7.25 7.82 7.51 8.59 7.37 8.15

TABLE 2. Measured and predicted loss values for lx4 power splitter fabricated
from three lx2 power splitters. The predicted values were calculated using
three methods: 1) additive overfilled losses, 2) additive underfilled losses,
and 3) mode transition matrix technique.

The discrepancies between measured and predicted loss values

can be calculated for each method. Averaging the

discrepancies for each method between ports, and assuming the

uncertainty of the method to be given by the standard

deviation of the discrepancies between ports we get the
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discrepancy values listed in Table 3. All three methods

accurately predict the average loss of the concatenation for

a launch condition similar to the one used in the method. In

other words, the average loss through the four ports of the

concatenation can be determined accurately (average

discrepancy < 0.1dB) for an overfilled launch if Method 1 or

3 is used, while the average loss of an underfilled launch

can be predicted accurately if either Method 2 or 3 is used.

Discrepancy Between Measured and Predicted Loss (dB)

Overfill Launch Underfill Launch

Method 1 -0.03 ± 0.34 -0.24 ± 1.30

Method 2 -0.39 ± 1.00 -0.08 ± 0.54

Method 3 -0.07 ± 0.13 -0.01 ± 0.19

Table 3. Discrepancy between measured and predicted values averaged
between optical ports with an uncertainty equal to the
standard deviation between optical ports.

Method 3 predicts the average loss of both launch conditions

accurately because it inherently takes into account some of

the modal properties of the passive network. This is one of

the advantages of the matrix approach. In system design,

however, the loss must be predicted accurately for each port,

not just the average loss through all ports. Therefore we

must examine the deviations reported in Table 3. The

underfilled loss method does not accurately predict the

concatenated loss of each port for either launch condition,
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and therefore, should not be used. The overfilled loss

measurement method predicts the loss of the concatenation for

an overfilled launch sufficiently well (deviation < 0.5dB),

but can not predict the loss of the underfilled

concatenation. The matrix method, however, can predict the

loss of each port very well (deviation < 0.2dB) for either

launch condition. It is this predictive capability which is

the main advantage of the matrix method.
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MTN MEASUREMENT SYSTEM

Introduction

The usefulness of the mode transition matrix method has been

demonstrated in predicting the loss of a concatenation of

fiber optic components. The technique, however, is

inherently complicated, requiring a measurement of the near

field pattern as well as the total optical power both

entering and exiting the device under test for two

independent excitation conditions. These measurements

require expensive equipment such as a CCD array or CCTV

camera and the data must be processed using complicated

mathematical operations such as curve fitting,

differentiation, and integration. In the following sections,

an invention (NAVY CASE NO. 73670) is described which allows

the Mode Transition Matrix of a passive fiber optic component

to be determined quickly and accurately using a novel method

which does not require the measurement of a near field

pattern. The invention only requires an ability to measure

the total optical power entering and exiting the component,

and all calculations are limited to algebraic operations

involving matrices, which are simple in comparison to

differentiation and curve fitting routines.
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Alternative Basis Sets

Previously, orthogonal step functions {1(8), 02(8)} were

described and used because of their physical significance.

While it is desirable to retain the descriptiveness of such a

basis set, other basis sets may be more convenient and

adaptable to measurement procedures. It has been shown that

the coupling of modes in a fiber optic component can be

written as a matrix equation (17) for an orthogonal step

function basis described by equation (25) where the input and

output power vectors are described by equation (26). If a

second basis is chosen {O'i(0), *'2(8)} and the power vectors

P1,P'Oare obtained using this basis set then a matrix

equation can be written
F'°="P i(31)

The power vectors calculated using the step function basis

are related to the power vectors calculated in this second

basis by a matrix transformation

P=CP (32)

where the matrix elements are determined from

2
Oj(8 Cj, 06()

1 (33)

Since the second basis set is not complete, this equality can

not be unconditionally satisfied for all 8. If nothing is

known or assumed about the modal power distributions entering

or exiting the device under test, equation (33) can be solved
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in a least squares sense. The solution for = is then

determined to be

C= a.P (34)

where

a i = f * ( ) O ( ) d S a n d i = 4 0 ) O ( 8 ) d 8

However, if the functional form of the modal power

distributions is known or assumed then a better estimate for =

can be obtained from

P'P. P =
CPOP where P= and I'= P] P1

Pi P20 P P/ (36)

where the modal power vector components are calculated using

the assumed input and output MPDs. In either case, given this

transformation matrix, =, the transition matrix calculated

using orthogonal step functions, T, is related to the

transition matrix calculated using the second basis set, T',

by

= c (37)

The invention to be described uses mode filters and fiber optic

switches to selectively measure the power vectors and mode

transition matrix of a non-orthogonal basis set. The basis set

can be determined using phase space diagrams, and the

transformation matrix, =, calculated either using equation (34) or

(36). The mode transition matrix described by equation (27) can

then be determined using equation (37).
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Description and Operation

The functional diagram of the invention is illustrated in

Figure 7.

Mode Selective DetLecto

Data Sterage; Matrix Calculation
and Display

Figure 7. Functional Diagram of Matrix
Measurement System.

The device can be broken into four major sections,

1) mode selective launcher, 2) input/output optics, 3) mode

selective detector, and 4) data storage and matrix calculation

software. The four sections will be discussed independently. For

the purposes of this report, the device under test is assumed to

be made of 100/140nm, 0.3NA optical fiber, operating at a

wavelength of 850nm. However, a device fabricated with any size

optical fiber operating at any wavelength could be used provided

all fiber sizes, source, and detection devices mentioned in this

report are scaled appropriately.

32



Mode Selective Launcher: The mode selective launcher is

illustrated in Figure 8.

Illuminator

to feedback
electronics

- - FO Switch

Parallel A B
Switching

L - - FO Switch

to I/O
Figure 8. Mode Selective Launcher

The launching device consists of a pigtailed, high-power

850nm light emitting diode (any LED that overfills the

100/140m fiber), and two 100/14011m fiber optic switches

(Dicon Fiberoptics #S-12-L-100-ST-P or the like), operated in

unison, to provide selection between two optical paths. The

LED must be maintained at a constant optical output power

throughout the duration of the measurement (the time scale

could vary between a few seconds and a few minutes depending

on whether or not a microprocessor has been used for

control). A typical feedback circuit to maintain constant

33



optical power is illustrated in Figure 9, but any like

circuit may be used without failure.

to +5V +5V

launcher
optics

Figure 9. Optical Feedback

Circuit designed to maintain
constant output optical power
from LED

The first path, A, consists of a short piece of a 'small-

core' (e.g. 50/125ILm, 0.2NA) optical fiber. The purpose of

this fiber is to selectively filter high-order modes from the

device under test. The low-pass characteristics of this

undersized fiber are illustrated in Figure 10a. The second

path, B, contains a mode mixer. This mode-mixing fiber
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should provide an overfilled mode distribution (all guided

modes contain power) to the device under test as illustrated

in Figure 10b.

1.0

0

((a)

S0.5

(0

0 0.5 1.0

Normalized Mode Number

Figure 10. (a) Mode Filter Selectively
passes low-order modes, and (b) Mode
Mixer overfills fiber.

Therefore, this section of the invention allows the user to

switch between underfilled and overfilled launch conditions.

Input/Output Optics: The input/output optics section

consists of two fiber optic switches, which are operated in

unison to provide the user a selection between two optical

paths as illustrated in Figure 11.

Parallel
SwitchingI I

To Mode From Mode
Selective Selective
Detector Launcher

Figure 11. Input/Output for Measurement
System.
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The first path, C, contains nothing more than the outputs of

the fiber switches terr~inated with fiber optic connectors

which are mated to each other (e.g. ST-type connector). The

second path, D, contains the outputs of the fiber switches

terminated with similar fiber optic connectors which are to

be mated to the device under test. This section therefore

provides user selection of an optical path through a

reference fiber containing a single connector or through the

revice under test.

Mode Selective Detection: The mode selective detection

section is similar in design to the mode selective launcher

and is illustrated in Figure 12.

Detector to data storage
Circuitry and calculation

- - - TO Switch

Parallel F E
Switching

- - - FO Switch

from I/O
Figure 12. Mode Selective Detector
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Again, two fiber optic switches are used in unison to select

between two optical paths. The first path, E, again contains

a short piece of undersized, 50/125ILm, optical fiber to

filter the high-order modes. The second path, however,

contains no additional fiber, and merely provides an

uninterrupted path to the detector. The detector must be

large enough in area to collect all of the light exiting the

100Jm optical fiber, and must be stable for the time duration

of the measurement. A power meter, such as the Photodyne

Model 22XLC with a model 150 Silicon Detector Head, an be

used for power measurements, and offers the advantage of a

large dynamic range. The mode selective detector allows the

user to measure the power in two independent mode groups.

The first group contains predominantly low-order modes, while

the second contains all guided modes.

Data Storage and Matrix Calculation:

Figure 13 illustrates the general scheme for the Mode

Transition Matrix Measurement system. The device consists of

three sets of fiber optic switches. The first set is

incorporated into the launch optics and can switch the

optical path between paths A and B of Figure 8. The second

set is part of the input/output optics and switches the

optical path between paths C and D of Figure 11. The final

set of switches is found in the detector optics and switches

the optical path between paths E and F of Figure 12. The

three sets of switches allow 23=8 total independent optical
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paths. A measurement of the optical power which propagates

through each of these paths must be measured and recorded.

For convenience I shall denote these power measurements by

Pxyz, where x describes the launch optical path and can have

the values A or B, y describes the input/output optical path

- .. . . .detector storage ........... illuminator[]~~~~ 1 .................... .
FO switch .............. FO switch

microprocessor
controlled switching

pOm ....... Overfilled~~~~~~~~................................ .. .. .........
fiber mode mixer

mode filter mode filter

FO switch FO switch

reference fiber i
w/ connector i

FO switch FO switch

from DUT to DUT

Figure 13. Microprocessor controlled Matrix Measurement System

and can have the values C or D, and z describes the detector

optics and can have the values E or F. Then the eight power

measurements can be recorded as PACE, PBCE, PADE, PBDE, PACF,

PBCF, PADF, PBDF. These power measurements can be grouped

into two, 2x2 matrices. The first shall be called the "Input

Matrix" and is a description of the power which propagates
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through the reference fiber. The second is called the

"Output Matrix" and describes the power which propagates

through the Device Under Test (DUT). The Input and Output

matrices are then defined as:

==[~ ~ PAC WM =[PAME PBDE
PM PBCF 0 PAM PBDE (38)

With these measured values the component's matrix can be

calculated by multiplying the matrices according to:
T OI(39)

where T is the component's matrix measured relative to the

mode groups selected by the invention. The mode transition

matrix, T, is related to T by the similarity transformation

of equation (37). The transformation matrix, Z, can be either

theoretically determined from a description of the fiber used

in the mode filters, or measured experimentally.

Transformation Matrix c: The transformation matrix, C,

"rotates" the optical power vector measured using the MTM

Measurement system into the power vector which would be

measured using the conventional mode block representation.

As discussed previously, the transformation matrix can be

determined in either of two methods.

The first method assumes nothing is known about the

functional form of the modal power distributions entering and

exiting the device under test. The method solves equation
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(33) in a least squares sense. The solution, presented as

equation (34), requires a determination of the basis set

which describes the mode filters used in the selective

detection unit of the MTM measurement system. This can be

accomplished using the phase-space diagrams illustrated in

Figure 14.

1.0 1.0

0.5 M'-0.5

0.0 0.0

0.0 0.5 1.0 0.0 0.5 1.0

(r/a) 2 (rla) 2

(a) (b)

Figure 14. (a) The modes transmitted by an undersized fiber mode filter in a
100/140gm fiber. (b) The guided modes of a 100/140m fiber.

Path E contains a piece of "small-core" fiber as described

previously. For the purposes of the following calculations,

this mode filtering fiber is assumed to be 50/125m, 0.20NA

graded-index fiber. The area of the large triangles

represents all of the guided modes of a 100/140m, 0.29NA

graded-index optical fiber. The shaded triangular region of

Figure 14a represents the portion of the power which will be

transmitted through the mode filter. The length of the

diagonal line, L(6), is proportional to the fractional power

allowed through path E for a given mode number 8 and is

determined geometrically to be
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ff 8, 8< A

L(8)- (1-8), 8 > IA, 8 < IA
2 4' 2 )

0, 8>I A
2 (40)

The basis function, *'i( 8 ), is calculated by dividing this

length by M7 in order to account for the density of modes.

Therefore for this mode filter we have determined the basis

function to be
1, 8 <I4/A

I1 8<1

28 4 2

2- (41)

The second basis function is easier to obtain. Since path F

of the mode selective launcher transmits all the optical

power regardless of mode number, the basis function is given

by

4(8) = I for all 8 (42)

The transformation matrix can now be determined from equation

(34) and equation (35) and is given by

( 0.706 0.232 (
-0.706 0.7681 (43)

It is interesting to note that if a 70m, 0.2NA graded-index

fiber were used in path E then the mode filter basis function

would equal the low-order mode block basis function. The

equality of equation (33) could then be unconditionally

satisfied for all 8, and therefore the transition matrix T

could be determined exactly.
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The second method requires a knowledge of the modal power

distributions entering and exiting the device under test. If

it is assumed that all power vectors transform under the same

transformation matrix, 2, then the transformation matrix can

be determined using equation (36). This is illustrated in

Figure 15. Figure 15a is a phase-space diagram in which the

shaded region represents the fiber modes which contain

optical power in a I00/140gm fiber which has been excited by

a 50/125pm step-index fiber. If we project this shaded

region of unit intensity onto the low- and high-order mode

blocks of Figures 10c and 10d, then we obtain a power vector

in the mode block representation equal to PA [1.3, 0.0].

Similarly if we project the shaded region of Figure 15b,

which shows a uniformly overfilled mode distribution, onto

these mode blocks we obtain a power vector given by

PB = [0.25, 0.75]. These are the power vectors obtained in

the mode block representation. It is a slightly more subtle

argument to determine the power vectors as would be measured

by the MTM measurement system. Figure 16 illustrates the

problem. The mode-filtered launch is again illustrated in

Figure 16a. The modes which lie along a diagonal are of the

same radial mode number and are therefore nearly degenerate.

It has been assumed that the optical power is strongly

coupled between these modes, and therefore the power

contained in the square becomes uniformly distributed along

these diagonal modes as seen in Figure 16b. Path E of the
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Figure 15. Modes propagating optical power in (a) underfilled launch,

and (b) over filled launch; (c) low-order mode block, and (d) high-order

launch onto mode blocks.mode block; projection of (e) underfilled launch, and (f) overfilled
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mode selective detector measures the power which is contained

in the triangular group of modes illustrated in Figure 16c.

1.0 1.0 1.0

~0. 5 0.5 C >0. 5

0.0 -0.0 0.0N

0.0 05 1.0 0.0 05 1.0 0.0 O 1.0

(rla) 2 (r/a) 2 (r/a) 2

(a) (b) (c)

Figure 16. (a) The modes excited by an undersized fiber mode filter in a
100/140m fiber. Strong coupling between degenerate modes averages the power
along diagonals (b). The mode filter in the mode selective detector filters
many of the higher-order modes (c).

Therefore, in order to determine the power vector measured by

the MTM Measurement system, the launched mode block must be

projected onto the detector mode block after allowing for the

averaging of power among degenerate modes. This is a subtle

point, and results in power vectors for the two launch

conditions: PA' = [0.8215, 1.0], PB' = [0.125, 1.0]. The

second coefficient of each vector is unity because Path F of

the mode selective detector allows all fiber modes a

continuous path to the detector. From these power vectors,

the transformation matrix can be calculated.

c=[ PA P .[ A PB]

1.00 0.25 ].0.8215 0.125
0.0 0.75 1.0 L
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_1.072 0.116)
-1.072 0.884 (44)

This matrix differs only slightly from the matrix determined

using the basis functions. It is important to note that any

matrix C'= a, , where a is any constant, will yield the same

transition matrix, T, because the similarity transformation

requires the multiplication of T'by both Z and c-.

Use for Pigtailed Optical Sources: In order to measure

the modal power vector of a pigtailed optical source, the

mode selective detector is used as a 'stand-alone' unit. The

connectorized pigtail of the optical source is mated to the

detector input connector. A single pair of optical switches

provides two independent power measurements, PL and PH, where

the subscripts correspond to low-order and high-order

detection. The two measurements are arranged into a column

vector and then multiplied by the transformation matrix, 2, to

yield the input power vector, Pi, which can be used in system

performance predictions.
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Experimental Results

The mode transition matrix of the coupled port of the fiber

optic power splitter labeled Cl in Figure 6, page 24, was

determined using the mode transition matrix measurement

system. The input and output power matrices of equation (38)

are given in Table 4, together with the calculated matrix,

T'. This matrix was transformed using the two transformation

= r80.54 74.64 1(b) 020 .104I 96.83 319.2 0.077 0.376

0 176. 112J 03570 26.61 1(c) 023 .07910 = 32.66 131.2 0.105 0.375

T, 0.1] (d) [0.o- 0.-123 0.440 0.118 0.421

(a)

Table 4. (a) Input and Output Power matricies and the resultant Transition
Matrix measured using The MTM Measurement System. (b) and (c) MTMs calculated
from the similarity transformations using the transformation matrices described
in Equations (43) and (44) respectively, and (d) MTM calculated from a measurement

of the Near Field Patterns entering and exiting the device under test (reproduced
from Table 1).

matrices given in equations (43) and (44). The results are

presented in Table 4 together with the Mode Transition Matrix

determined previously using the Near Field Pattern technique.

There is good agreement between the matrix values for all

cases.
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ALTERNATIVE APPROXIMATION TECHNIQUES

There are several alternate methods to characterize the modal

characteristics of multimode fiber optic components. Two

other methods which deserve mention are 1) differential mode

attenuation, and 2) mode transfer function.

Differential Mode Attenuation

In some passive fiber optic components, it is possible that

there is little coupling between modes of different

propagation constant. In this case, the mode transfer

function, T(8,8') can be written as

T(88')= (T(8) 8=8')

0 8 8' (45)

The integration over 8' of equation (14) can now be done

yielding a solution of the form

T(8) =
pio() (46)

This is a very special case of the general problem, and it

must be determined experimentally which optical components

can be described with this method.
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Mode Transfer Function

The functional form of the transfer function of equation (14)

might be deduced from a knowledge of the properties of the

fiber optic component. For example, in a low-loss fiber

optic connector, Yang, et a13 assume that a Gaussian coupling

function exists

T(R,R') = S(R-R') - IdR" m(R")a(R",R)8(R-R) + m(R)a(R,R') (47)

where
= R2-Rja(R,R') = Uo C" 29R

2 (48)

where ao and T are fitting parameters (R is the mode

parameter to avoid confusion with the delta-function), which

can be determined from a measurement of the loss and the near

field patterns entering and exiting the device under test for

a single excitation. Mode transition matrices can be

generated from this transfer function for any basis set using

equation (18). The limitations of this technique lie in

one's ability to accurately assume, a priori, a form for the

transfer function of complicated passive fiber optic devices.
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COMPUTER SOFTWARE

Three computer programs have been written to support the mode

transition matrix investigation. The first program stores

the digitized near field pattern data together with the total

optical power and the fiber radius. The near field pattern

data is then fit to a linear combination of user chosen basis

functions using a curve fitting program. The two basis sets

presently available are Chebychev and Hermite polynomials.

This second program also differentiates the near field

pattern fit algebraically using the well known recursion

relations for these polynomial functions, and then calculates

the modal power distribution from this derivative. Finally,

the program integrates the modal power distribution into

modal power vectors and records the coefficients. The third

program calculates the mode transition matrix of the device

under test from the modal power vectors associated with the

input and output near field patterns of two independent

excitation conditions. All programs have been written in

Rocky Mountain BASIC for use by an HP 9826 laboratory

computer.

Also available from the author is a program which calculates

the fiber radius from the near field pattern. The program

requires the NFP for an overfilled launch condition and

calculates the radius from the -16dB points.
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CONCLUSIONS

The mode transition matrix method has been determined to be a

useful method to characterize the mode coupling present in

passive fiber optic components. The experimental method,

however, is quite complicated and requires much computational

analysis. Input and output near field pattern data must be

recorded for two independent launch conditions and then

differentiated to calculate the modal power distribution.

Because direct differentiation results in amplification of

the noise inherent in the measured data, a smoothing routine

or curve fitting operation must be applied. Through the use

of fiber optic switches and mode filters, an optical system

has been designed which can quickly and easily approximate

the mode transition matrix. The method requires only the

total optical power entering and exiting the device under

test be recorded, and all mathematical operations are limited

to algebraic operations of matrices. A patent disclosure has

been submitted on the device (Navy Case # 73670). Other

techniques exist which allow a description of the modal

properties of fiber optic components. Two of these methods,

differential modal attenuation and mode transfer function,

were discussed. The assumptions made by each method as well

as their limitations were presented.
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